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Abstract 
Word embeddings is a technique in natural language processing whereby words are embedded 
in a high-dimensional space. They are used in sentiment analysis, entity detection, 
recommender systems, paraphrasing, text summarisation, question answering, translation, and 
historical and geographic linguistics. We describe a Snap! library that contains 20,000 word 
embeddings in 15 languages. Using a block that reports a list of 300 numbers for any of the 
known words, one can create programs that search for similar words, find words that are the 
average of other words, explore cultural biases, and solve word analogy problems. These 
programs can work in a single language or rely upon the alignment of the word embedding 
spaces of different languages to perform rough translations. 
 
To compute with word embeddings one needs to perform vector arithmetic. This can be 
accomplished by providing vector arithmetic blocks. More advanced users can instead take 
advantage of Snap!’s support of higher-order functions to use list mapping blocks to perform the 
vector operations. 
 

Word embeddings place within Natural Language Processing 
Natural language processing is a broad field which includes translation, question answering, 
parsing, sentiment analysis, summarization, chatbots, speech recognition, and speech 
synthesis. Here we focus on one piece that is an underlying foundation of many natural 
language processing systems constructed in the last decade. The ability to place words in a 
high-dimensional space is also itself a way to computationally explore the semantics and 
morphology of words. Unlike other natural language processing technologies, the mathematics 
behind word embeddings is at a high school level or lower. 

Introduction to word embeddings 
Word embeddings are very useful in machine learning since nearly all machine learning 
systems work only with numbers (typically multi-dimensional arrays of numbers called tensors). 



Textual input to a machine learning system is enabled by mapping each word in the text to a 
vector of numbers. 
 
Word embeddings themselves can be used directly for various tasks including solving word 
analogy problems. They can solve problems such as 
 

1. Man is to woman as king is to X 
2. Cat is to kitten as dog is to X 
3. Slow is to slower as fast is to X 
4. Paris is to France as Berlin is to X 

 
The first example can be recast as finding the word closest to the result of adding to the vector 
associated with ‘king’ the difference between the vectors for ‘woman’ and ‘man’. In ratio notation 
we can say: 
 

woman : man :: queen : king 
 

Similar to how one says: 
 

40 : 60 :: 2 : 3 
 

Or it can be expressed as this approximate equality between vectors: 
 

woman - man ≈ queen - king 
 
Given the ability to map words to a high-dimensional space students can create programs to 
explore the space. They can attempt to answer questions like: 
 

1. Do some words have many close neighbours and others few? 
2. Are opposites near each other? 
3. Do colours form their own neighbourhood? Emotions? Animals? 
4. What words does this technique get wrong? 
5. What problems do multiple senses of the same word create? 
6. Does the membership of clusters of “nice” words (e.g. flowers) and “not nice” words (e.g. 

insects) reveal biases? 

Where do word embeddings come from? 
 
There are three ways researchers have created word embeddings: 
 

1. By “hand” 
2. By frequencies 



3. By machine learning 

Creating word embeddings “by hand” 
 
Creating word embeddings “by hand” involves creating a list of features or attributes for each 
word. For example, one might describe a puppy as 
 
<0.3,   size measure 
  0.9,   cuteness measure 
  0.1,   age measure 
  1,      animals are the first of 6 phyla 
  1,      nouns are the first of 9 parts of speech 
 …      many more are possible 
> 
 
Metric dimensions such as size, cuteness, and age work well but category ids such as phyla 
and parts of speech are problematic. Is part of speech id 1 closer to 2 than to 3 or 9? These are 
arbitrary encodings without any geometric meaning. There is a technical solution called “one 
hot” which turns any category into a long list of binary (0 or 1) properties. A puppy would 
become 
 
<... 
0.1,      age measure 
1, animal 
0, plant 
0, fungus 
0, protist  
0, bacteria 
0, archaea 
1,        noun 
0,        verb 
0,        participle 
…> 
 
Note that to make distance calculations between vectors the values need to be standardized, for 
example, constrained to values between 0 and 1. This can be a problem for dimensions such as 
size that would need to span the range from quarks to galactic superclusters. 

Creating word embeddings by frequencies of co-occurrence 
 
Another way of creating word embeddings is to use the frequency with which a word occurs 
near other words in a large corpus of text (e.g. all of Wikipedia in a particular language). This 



builds upon the concept of distributional semantics  [Harris 1954].  The underlying idea that “a 
word is characterized by the company it keeps" was popularized by Firth [Firth 1957]. 
 
Puppy might be something like 
 
<.0023,      ‘kitten’ occurs nearby sometimes 
  .027,         ‘and’ occurs nearby frequently 
  .000007,   ‘algebra’ occurs nearby but rarely 
…> 
 
The major shortcoming to this approach is that each vector needs to be as long as the size of 
the entire vocabulary. Vectors consisting of one million numbers are expensive to store and 
compute with. Limiting the vocabulary to the n most common words helps but is still expensive 
and limits the utility of the embeddings. 

Extracting word embeddings for machine learning models 
There are now several deep machine learning models that estimate the probabilities of what the 
missing words are from sentences with one or two removed [Mikolov et al 2013a]. They have 
been trained on text containing billions of words. The hidden layer in the neural network that 
feeds into the final output layer that predicts the probabilities can be used to generate word 
embeddings. The weights from each node in that penultimate layer can be collected as they 
connect to the output nodes for each word. Figure 1 illustrates this. 
 



 
Figure 1 - a sketch of a neural net that can be used to generate a vector of 300 numbers for 

each possible output word 
 

Unlike the frequency approach, each word embedding is only a few hundred numbers. The 
word embeddings are the result of very computationally intensive training with huge amounts of 
data but once extracted they can simply be implemented as a lookup table. Word analogy 
problems, for example, can be solved without using machine learning models at run-time. 
 
Each node in the penultimate layer receives inputs from a deep network that has extracted a 
very large number of features. Typically these networks have millions of parameters. This 
makes it nearly impossible to say what any of the dimensions of the word embeddings mean. 
What is clear about these embeddings is that closely related words tend to be close together in 
this high-dimensional space and unrelated words are far apart. 

Word embedding Snap! Blocks 
We developed the word embedding Snap! blocks as part of the eCraft2Learn AI programming 
library [Kahn and Winters 2018]. It relies upon Snap!’s ability to create blocks using JavaScript. 
The library is free and open-source and available as both exported Snap! Blocks as well as a 
project that includes sample block usage and comments. Furthermore, we have provided a 



programming guide for each AI programming library including the one for word embeddings. 
Links to all of these resources and more is at https://ecraft2learn.github.io/ai/. 
 
The basic word embedding block is one that reports a list of 300 numbers for any of 20,000 
words in any of 15 languages (see Figure 2). We selected the most common lower case words 
lacking punctuation or digits from databases with one million words [Grave et al 2018]. To 
include more words and proper nouns would not be difficult but would result in longer load 
times, more memory consumption, and slower searches for nearby words. We chose the 15 
languages based upon the needs of the eCraft2Learn project [Kahn and Winters 2018] and the 
languages’ popularity. We have documented how one can add word embeddings for additional 
languages to Snap! 
[https://ecraft2learn.github.io/ai/word-embeddings/adding-more-languages.html]. 
 

 
Figure 2 - Obtaining the word embedding for ‘dog’ 

 
To find the closest word to a word embedding we provide the block illustrated in Figure 3. 
 

 
Figure 3 - Searching for the word closest to ‘dog’ (not including ‘dog’ or ‘dogs’) 

 
We provide a full-featured version of closest word for advanced users. It enables one to provide 
blocks that run as better and better matches are found. Also it supports a choice between two 
different distance measures: Euclidean distance and cosine similarity. An example of its use is 
illustrated in Figure 4. 
 

https://ecraft2learn.github.io/ai/
https://ecraft2learn.github.io/ai/word-embeddings/adding-more-languages.html


 
Figure 4 - Observing progress as the search for the closest word proceeds 

 
We also implemented a block that sorts all the available words by how close they are to a vector 
input. It uses cosine similarity to measure closeness. Since each comparison entails many 
hundred multiply and add operations and we need to do 20,000 comparisons we chose to 
implement this using TensorFlow.js [https://www.tensorflow.org/js]. If the device has a GPU it 
can typically perform this in less than one second. 
 
A block that reports all words with embeddings in a given language is illustrated in Figure 5. 
 

 
Figure 5 - Obtaining all the words with embeddings in the specified language 

 
The default language can be set by the block illustrated in Figure 6. Note that the default 
language is also used by Snap! blocks for speech synthesis and recognition. 

https://www.tensorflow.org/js


 
Figure 6 - The block for setting the default language 

 
While a great deal of information is lost when mapping a point in 300 dimensions to two it can 
be useful. Figure 7 illustrates a block that relies upon t-SNE [Maaten and Hinton 2008] so that 
words nearby in 300 dimensions are near in two dimensions and those that are far apart in 300 
dimensions are far apart in two dimensions. 
 

 
Figure 7 - a block for obtaining a two-dimensional approximation of a word embedding 

Finding words close to (and far from) other words 
One can explore programmatically how a word can be closer to one set of words and further 
from another set of words while another word may be the opposite. This might reveal that 
flowers are close to pleasant words and far from unpleasant words while the opposite is true of 
insects. One can discover biases in this manner. These biases are implicit in the training text 
(Wikipedia and a web crawl). 
 



A paper published in Science “Semantics derived automatically from language corpora contain 
human-like biases” [Caliskan et al 2017] proposed a way to measure word biases. The idea is to 
use the average distance two words have to two sets of "attribute" words. To explore gender 
bias, for example, the attribute word lists can be "male, man, boy" and "female, woman, girl". 
The difference of the average distances provides a score that can be used to compare words. 
 

 
Figure 8 - Relative maleness and pleasantness scores of “president” and “maid” 

 
Figure 8 illustrates a bias that “president” has a high maleness score while “maid” has a lower 
score. (Also “maid” is associated more closely with pleasant terms than “president”.) Some 
caution is required when exploring biases. A well-known bias is that “doctor” is more male than 
“nurse”. This may be a bias or due to the fact that only women nurse babies. 

Solving word analogy problems 
An amazing aspect of word embeddings is how they can be used to solve word analogy 
problems. For example, the problem “Man is to woman as father is to X” can be recast in terms 
of vector arithmetic. Starting with the expectation illustrated in Figure 9 that 
 

woman - man ≈ mother - father 
 
we can “solve” for X as 
 

X  ≈ father + (woman - man) 



 
Figure 9 - The geometric relationship between man and woman is similar to that of father and 
mother (except the relationship is not two-dimensional but is in a very high-dimensional space) 

 

 
Figure 10 - Solving a word analogy problem in Snap! 

 
One way to interpret the equation is that if we compute “femaleness” by (woman - man) and add 
that to “father” we get “a female father” or a “mother”. Note that an equivalent equation 
 

X  ≈ woman + (father - man) 
 

Can be understood as computing the essence of “parent” by (father - man) and then adding that 
to “woman” to obtain “mother”. 
 
Word analogy problem solving using word embeddings is not limited to the meaning of words. 
Word embeddings also encode word morphologies so, for example, they can solve “fast is to X 
as slow is to slower” 



Visualising word embeddings 
While it is very useful to place words into a 300-dimensional space it makes it hard to visualize. 
Two popular means of visualizing high dimensional space is to map them to two or three 
dimensions. This can rely upon Principal Component Analysis (PCA) or T-distributed Stochastic 
Neighbor Embedding (t-SNE). A free tool provided by Google provides a way to interactively 
explore our word embeddings 
[https://projector.tensorflow.org/?config=https://ecraft2learn.github.io/ai/word-embeddings/en/pro
jector.json]. 
 
A programmatic interface in Snap! Is also provided as illustrated in Figure 7. The “location of” 
block uses t-SNE to report two-dimensional coordinates for any word. Words close to each other 
in 300-dimensional space tend to be close in this two-dimensional mapping and those that are 
far away tend to be mapped to distant locations. Using this block one can define the “display 
word” block illustrated in Figure 11. 
 

 
Figure 11 - a block for displaying words in Snap!’s Stage 

 
Using Snap!’s pen and movement commands one can visualise a word embedding as vertical 
lines whose length corresponds to the value of each element in the word embedding vector. 
Figure 12 illustrates this by depicting ‘dog’ and ‘cat’. One can see how close these words are 
but also see several differences. 

 
Figure 12 - Visualizations of the ‘cat’ and ‘dog ’embeddings 

https://projector.tensorflow.org/?config=https://ecraft2learn.github.io/ai/word-embeddings/en/projector.json
https://projector.tensorflow.org/?config=https://ecraft2learn.github.io/ai/word-embeddings/en/projector.json


Implementation issues 
Unlike the rest of the Snap! AI library the entire word embedding subset could have been 
implemented purely in Snap!. For reasons of performance and memory usage we relied instead 
upon Snap!’s ability to define blocks in JavaScript. Regarding memory usage we currently 
support 15 languages where each language needs to associate 300 numbers with each of 
20,000 words (90,000,000 numbers in total and more as more languages are supported). Even 
if the memory requirements were satisfiable, we suspect that the time to load a Snap! project 
with so much data would be very slow. We addressed these problems by implementing each 
language’s embedding as a JavaScript file that is loaded on demand. 
 
A very heavily used block finds words close to a given vector. The distance between two points 
in the 300-dimensional space can be measured as the Euclidean distance or using cosine 
similarity. They behave roughly similarly but researchers prefer cosine similarity. Cosine 
similarity is defined as the dot product divided by the product of the magnitudes. A 
straightforward implementation in Snap! is over 100 times slower than the equivalent JavaScript 
program. Dot product was particularly slow when implemented using “map” so we used the 
uglier “for” command instead. On a modern laptop Snap! took 5110 milliseconds without “warp” 
and 71 milliseconds with it. The JavaScript equivalent took 0.18 milliseconds. Recall that a 
frequent operation is to search through all 20,000 words for the closest word. As described 
earlier when one wants the ranking of all 20,000 words an implementation that can take 
advantage of an available GPU is faster still. 
 
The word embeddings used in this chapter were created by Facebook 
[https://fasttext.cc/docs/en/support.html] . They trained their machine learning models on 157 
different languages on all Wikipedia articles in each language [Grave et al 2018]. Even though 
that was about a billion words each that wasn't enough, so they also trained their models on 
tens of billions more words found by crawling the web. They created tables for each language of 
at least a million different words. The blocks described here provide the 20,000 most common 
words for 15 languages. 
 
Each language’s embedding is independent of each other. Techniques have been developed, 
however, to rotate one language’s embedding to roughly match another’s. We relied upon a 
technique to align two languages given a small word list [Mikolov et al 2013b]. We provided a 
word list of 500 words (2.5%) to obtain a good alignment for the other 97.5%. The alignment 
was done in Python relying upon a student project [Xiaohong 2017]. As illustrated in Figure 13, 
due to this alignment one can fetch features in one language and search a different one. 
 

https://fasttext.cc/docs/en/support.html
https://fasttext.cc/docs/en/support.html
http://commoncrawl.org/


 
Figure 13 - Using ‘closest word’ between languages 

Learning outcomes 

At the time of writing we know of only two high school students who created projects using the 
word embedding blocks. One girl, for example, created a spelling quiz that relied upon finding 
the next closest word. More trials are being planned. We are investigating if any of the following 
learning outcomes can be observed: 

1. Linear algebra (appreciation, creative uses, and practice) 
2. Higher-order programming (understanding and appreciation) 
3. Semantics of words (synonyms, antonyms, word senses, …) 
4. Geometry (high-dimensional spaces, correspondences with vector arithmetic) 
5. AI - Natural language processing and machine learning 
6. Computational thinking (in a context rarely considered) 

 

An introduction of word embedding programming to teachers in 
training 
We conducted a study of N students at the Beijing Normal University… 
 

Study methodology 
 

Research questions 

 

Findings 

Possible projects 
 
A few suggestions for projects using these word embedding blocks are: 



 
1. Use word embeddings to explore the similarity of sentences. One idea is to average all 

the words in the sentence. This is called the bag of words technique since it ignores the 
order of the words just as if they were put in a bag. 

2. Find a chain of similar words by finding the nearest word to the starting word. Then 
repeatedly find the nearest word to that while making sure to never repeat the same 
word. Use this to repeatedly change random words one at a time in a famous poem or 
text (e.g. "roses are red and violets are blue"). 

3. Make word games using word embeddings. For example, something like Semantris 
[https://experiments.withgoogle.com/semantris], a semantic version of Tetris. A bilingual 
version Semantris might be a good idea. 

4. Create a program that searches for new word analogies. Hint: If A is to B as C is to D 
then A-B "is close to" C-D. 

5. Search for biases that arise from the way people write about things. See if any biases 
found also apply in other languages. 

6. Use word embeddings as a way to input textual data into the deep neural nets. The deep 
learning models can be created with other Snap! AI blocks [Kahn et al 2019]. This opens 
up a wide range of natural language processing possibilities.  

Future developments 
We chose to limit the number of words supported to 20,000 words and ignored all proper nouns. 
If proper nouns were added one would be able to solve analogies such as “Paris is to France as 
Berlin is to X”. Perhaps more interestingly one can explore biases associated with given names 
that are associated with particular cultures, genders, or religions. Or biases against baby names 
that were popular during particular decades. Relationships between occurrences of the names 
of historical figures can be explored. Word embeddings generated from texts from different 
periods in history can be explored to see how the meanings of some words have changed (e.g. 
“awful”). 
 
A weakness with word embeddings is that different senses of a word are combined. “Duck” is 
close to “chicken” and close to “jump”. “Rat” ends up near “screen” because “rat” is near 
“mouse” and (computer) “mouse” is near (computer) “screen”. Researchers are exploring word 
sense embeddings that address this problem.  
 
Another problem is that we consider only single words. “Sherbet” and “sorbet” are close to each 
other but “ice cream” has no entry. Similarly proper nouns such as “New York City” are currently 
not handled well. 
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